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ABSTRACT
We prove that for every decision tree, the absolute values of
the Fourier coe�cients of given order t > 1 sum to at most
(cd/t)t/2(1 + logn)(t�1)/2, where n is the number of variables, d
is the tree depth, and c > 0 is an absolute constant. This bound
is essentially tight and settles a conjecture due to Tal (arxiv 2019;
FOCS 2020). The bounds prior to our work degraded rapidly with
t, becoming trivial already at t =

p
d .

As an application, we obtain, for every integer k > 1, a par-
tial Boolean function on n bits that has bounded-error quantum
query complexity at most dk/2e and randomized query complex-
ity �̃(n1�1/k ). This separation of bounded-error quantum versus
randomized query complexity is best possible, by the results of
Aaronson and Ambainis (STOC 2015). Prior to our work, the best
known separation was polynomially weaker:O(1) versus �(n2/3�� )
for any � > 0 (Tal, FOCS 2020).

As another application, we obtain an essentially optimal sepa-
ration of O(logn) versus �(n1�� ) for bounded-error quantum ver-
sus randomized communication complexity, for any � > 0. The
best previous separation was polynomially weaker:O(logn) versus
�(n2/3�� ) (implicit in Tal, FOCS 2020).
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• Theory of computation ! Quantum complexity theory;
Problems, reductions and completeness; Probabilistic computa-
tion.
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1 INTRODUCTION
Understanding the relative power of quantum and classical com-
puting is of basic importance in theoretical computer science. This
question has been studied most actively in the query model, which
is tractable enough to allow unconditional lower bounds yet rich
enough to capture most of the known quantum algorithms. Illus-
trative examples include the quantum algorithms of Deutsch and
Jozsa [13], Bernstein and Vazirani [6], Grover [16], and Shor’s
period-�nding [24]. In the query model, the task is to evaluate
a �xed function f on an unknown n-bit input x . In the classical
setting, query algorithms are commonly referred to as decision trees.
A decision tree accesses the input one bit at a time, choosing the
bits to query in adaptive fashion. The objective is to determine
f (x) by querying as few bits as possible. The minimum number of
queries needed to determine f (x) in the worst case is called the
query complexity of f . The quantummodel is a far-reaching general-
ization of the classical decision tree whereby all bits can be queried
in superposition with a single query. The catch is that the outcomes
of those queries are then also in superposition, and it is not clear
a priori whether quantum query algorithms are more powerful
than decision trees. The focus of our paper is on the bounded-error
regime, where the query algorithm (quantum or classical) is allowed
to err with small constant probability on any given input.

The comparative power of randomized and quantum query algo-
rithms has been studied for more than two decades. In pioneering
work, Deutsch and Jozsa [13] gave a quantum query algorithm that
solves, with a single query, a problem on n bits that any determinis-
tic decision tree needs at least n/2 queries to solve. Unfortunately,
this separation does not apply to the more subtle, bounded-error
setting. This was addressed in follow-up work by Simon [25], who
exhibited a problem with bounded-error quantum query complex-
ity O(log2 n) and randomized query complexity �(pn). These are
striking examples of the computational advantages a�orded by the
quantum model.

1.1 Forrelation and Rorrelation
The above results leave us with a fundamental question: what is
the largest possible separation between bounded-error quantum
and randomized query complexity, for a problem with n-bit input?
This question was raised by Buhrman et al. [9] and, a decade later,
by Aaronson and Ambainis [1], who presented it as being essential
to understanding the phenomenon of quantum speedups. Toward
this goal, the authors of [1] obtained both positive and negative
results. They showed, for every constant t, that every quantum
algorithm with t queries can be converted to a randomized decision
tree of cost O(n1�1/2t ). In particular, this rules out an O(1) versus
�(n) separation. In the opposite direction, Aaronson and Ambainis
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exhibited a problem that can be solved to bounded error with a
single quantum query but has randomized query complexity �̃(pn).
They left open the challenge of obtaining a separation ofO(1) versus
�(n� ) for some � > 1/2.

In more detail, Aaronson and Ambainis [1] introduced and stud-
ied the k-fold forrelation problem. The input to the problem is a
k-tuple of vectors x1, x2, . . . , xk 2 {�1, 1}n, where n is a power of
2. De�ne

�n,k (x1, x2, . . . , xk ) =
1
n
1|Dx1HDx2HDx3H · · ·HDxk 1, (1)

where 1 is the all-ones vector, H the Hadamard transform matrix of
order n, and Dxi the diagonal matrix with the vector xi on the diag-
onal. Since each of the linear transformations H ,Dx1 ,Dx2 , . . . ,Dxn
preserves Euclidean length, we have |�n,k (x1, x2, . . . , xk )| 6 1.
Given x1, x2, . . . , xk , the forrelation problem is to tell apart the cases
|�n,k (x1, x2, . . . , xk )| 6 � and �n,k (x1, x2, . . . , xk ) > � , where the
problem parameters 0 < � < � < 1 are suitably chosen constants.
Equation (1) directly gives a quantum algorithm that solves the
forrelation problem with bounded error and query cost k, where
the k queries correspond to the k diagonal matrices. The cost can be
further reduced to dk/2e by viewing (1) as the inner product of two
vectors obtained by dk/2e and bk/2c applications, respectively, of
diagonal matrices [1]. Aaronson and Ambainis complemented this
with an �̃(pn) lower bound on the randomized query complexity
of the forrelation problem for k = 2, hence the 1 versus �̃(pn)
separation mentioned above.

Building on the work of Aaronson and Ambainis [1], last year
Tal [28] gave an improved separation of O(1) versus �(n2/3�� ) for
bounded-error quantum and randomized query complexities, for
any constant � > 0. For this, Tal replaced (1) with the more general
quantity

�n,k ,U (x1, x2, . . . , xk ) =
1
n
1|Dx1UDx2UDx3U · · ·UDxk 1, (2)

where U is an arbitrary but �xed orthogonal matrix. On input
x1, x2, . . . , xk 2 {�1, 1}n, the author of [28] considered the prob-
lem of distinguishing between the cases |�n,k ,U (x1, x2, . . . , xk )| 6
2�k�1 and �n,k ,U (x1, x2, . . . , xk ) > 2�k . This problem is referred
to in [28] as the k-fold rorrelation problem with respect to U . The
quantum algorithm of Aaronson and Ambainis, adapted to the ar-
bitrary choice of U , solves this new problem with dk/2e queries
and advantage �(2�k ) over random guessing, which counts as a
bounded-error algorithm for any constant k . On the other hand,
Tal [28] proved that the randomized query complexity of k-fold
rorrelation for uniformly random U is �(n2(k�1)/(3k�1)/k logn)
with high probability. While this is weaker than Aaronson and
Ambainis’s bound for k = 2, setting k to a large constant gives a
separation of O(1) versus �(n2/3�� ) for bounded-error quantum
and randomized query complexity for any constant � > 0.

1.2 Our Results
Prior to our paper, Tal’s separation of O(1) versus �(n2/3�� ) was
the strongest known, and Aaronson and Ambainis’s challenge of
obtaining an O(1) versus �(n1�� ) separation remained open. The
main contribution of our work is to resolve this question.

Separations for Partial Functions. In what follows, we let fn,k ,U
denote the k-fold rorrelation problem with respect to U .We prove:

T������ 1.1. Letn andk be positive integers, withk 6 1
3 logn�1.

LetU 2 Rn⇥n be a uniformly random orthogonal matrix. Then with
probability 1 � o(1),

R 1
2��

(fn,k ,U ) = �

 
� 2

k
· n1�

1
k

(logn)2� 1
k

!
(3)

for all 0 6 � 6 1/2.

For k = 2, this lower bound is the same as Aaronson and Ambai-
nis’s lower bound for the forrelation problem (which is fn,2,H in
our notation). For k = 3 already, Theorem 1.1 is a polynomial im-
provement on all previous work, including Tal’s recent result [28].
Theorem 1.1 is essentially tight for all k , both even and odd, due
to the matching upper bound Ok (n1�1/k ) of Aaronson and Am-
bainis [1] for bounded block-multilinear polynomials of degree k .
Since fn,k ,U has an e�cient quantum protocol for every U (see
Section 5.2 for details), we obtain the following corollary:

C�������� 1.2. Let � > 0 be given. Then there is a partial Boolean
function f on {�1, 1}n with

Q1/3(f ) = O(1),
R1/3(f ) = �(n1�� ).

This separation of bounded-error quantum and randomized query
complexities is best possible for all f due to Aaronson and Ambai-
nis’s aforementioned result that every quantum protocol with k
queries can be simulated by a randomized query algorithm of cost
O(n1�1/2k ). In particular, Corollary 1.2 shows that the rorrelation
problem separates quantum and randomized query complexity opti-
mally, of all problems f . The following incomparable corollary can
be obtained by taking k = k(n) in Theorem 1.1 to be an arbitrarily
slow-growing function, e.g., k = log log logn:

C�������� 1.3. Let � : N! N be any monotone function with
�(n) ! 1 as n ! 1. Then there is a partial Boolean function f on
{�1, 1}n with Q1/3(f ) 6 �(n) and R1/3(f ) > n1�o(1).

Again, this quantum-classical separation is best possible since [1]
rules out the possibility of an O(1) versus n1�o(1) gap.

A satisfying probability-theoretic interpretation of our results is
that the phenomenon of quantum-classical gaps is a common one.
More precisely, our results show that the set of orthogonal matri-
ces U for which fn,k ,U does not exhibit a best-possible quantum-
classical separation has Haar measure 0. Prior to our work, this
was unknown for any integer k > 2.

Separation for Total Functions. Our results so far pertain to partial
Boolean functions, whose domain of de�nition is a proper subset
of the Boolean hypercube. For total Boolean functions, such large
quantum-classical gaps are not possible. In a seminal paper, Beals et
al. [5] prove that the bounded-error quantum query complexity of
a total function f is always polynomially related to the randomized
query complexity of f . A natural question to ask is how large this
polynomial gap can be. Grover’s search [16] shows that the n-bit
OR function has bounded-error quantum query complexity �(pn)
and randomized complexity �(n). For a long time, this quadratic
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separation was believed to be the largest possible. In a surprising
result, Aaronson et al. [2] proved the existence of a total function
f with R1/3(f ) = �̃(Q1/3(f )2.5). This was improved by Tal [28]
to R1/3(f ) > Q1/3(f )8/3�o(1). We give a polynomially stronger
separation:

T������ 1.4. There is a function f : {�1, 1}n ! {0, 1} with

R1/3(f ) > Q1/3(f )3�o(1).

Theorem 1.4 follows automatically by combining our Corol-
lary 1.3 with the “cheatsheet” framework of Aaronson et al. [2].
Speci�cally, they prove that any partial function f on n bits that
exhibits an no(1) versus n1�o(1) separation for bounded-error quan-
tum versus randomized query complexity, can be automatically con-
verted into a total function with R1/3(f ) > Q1/3(f )3�o(1). A recent
paper of Aaronson et al. [3] conjectures that R1/3(f ) = O(Q1/3(f )3)
for every total function f , which would mean that our separation
in Theorem 1.4 is essentially optimal. The best current upper bound
is R1/3(f ) = O(Q1/3(f )4) due to [3], derived there from the break-
through result of Huang [17] on the sensitivity conjecture.

Separations for Communication Complexity. Using standard reduc-
tions, our quantum-classical query separations imply analogous
separations for communication complexity. In more detail, let f be a
(possibly partial) Boolean function on {�1, 1}n . For any communica-
tion problem � : {�1, 1}m ⇥ {�1, 1}m ! {�1, 1},we let f �� denote
the (possibly partial) communication problem on ({�1, 1}m )n ⇥
({�1, 1}m )n given by (f � �)(x,�) = f (�(x1,�1), . . . ,�(xn,�n )).
Buhrman, Cleve, and Wigderson [7] proved that any quantum
query algorithm for f gives a quantum communication protocol
for f � � with the same error and approximately the same cost.
Quantitatively,

Qcc
� (f � �) 6 Q� (f ) ·O(m + logn), (4)

where Qcc
� denotes �-error quantum communication complexity.

Reversing this inequality has seen a great deal of work, mainly in the
classical setting. A well-studied function � in this line of research is
the inner product function IPm : {�1, 1}m ⇥ {�1, 1}m ! {�1, 1},
given by IPm (u,�) =

…m
i=1(ui ^�i ). In particular, Chattopadhyay,

Filmus, Koroth, Meir, and Pitassi [10, Theorem 1] prove that

Rcc1/3(f � IPc logn ) = �(R1/3(f ) logn) (5)

for every (possibly partial) function f on {�1, 1}n, where Rcc� de-
notes �-error randomized communication complexity and c > 1
is an absolute constant. In light of this connection between query
complexity and communication complexity, our main results have
the following consequences.

T������ 1.5. Let � > 0 be given. Then there is a partial Boolean
function F on {�1, 1}N ⇥ {�1, 1}N with

Qcc
1/3(F ) = O(logN ),

Rcc1/3(F ) = �(N 1�� ).

P����. Take f as in Corollary 1.2 and de�ne N = cn logn and
F = f � IPc logn . Then the communication bounds follow from (4)
and (5), respectively.

Theorem 1.5 is essentially optimal and a polynomial improvement
on previous work. The best previous quantum-classical separation
for communication complexity was O(logN ) versus �(N 2/3�� ),
implicit in Tal [28] and preceded in turn by other exponential sep-
arations [14, 21, 22]. Similarly, our Corollary 1.3 translates in a
black-box manner to communication complexity:

T������ 1.6. Let � : N ! N be any monotone function with
� = �(1). Then there is a partial Boolean function F on {�1, 1}N ⇥
{�1, 1}N with

Qcc
1/3(F ) 6 �(N ) logN ,

Rcc1/3(F ) > N 1�o(1).

P����. Take f as in Corollary 1.3 and de�ne N = cn logn and
F = f � IPc logn . Then the communication bounds follow from (4)
and (5), respectively.

Finally, we obtain the following result for total functions.

T������ 1.7. There is a function F : {�1, 1}N ⇥ {�1, 1}N !
{0, 1} with

Rcc1/3(F ) > Qcc
1/3(F )

3�o(1).

P����. The cheatsheet framework [2] ensures that the quantum
and classical query complexities of f in Theorem 1.4 are polynomial
in the number of variables n. With this in mind, we proceed as
before, setting N = cn logn and F = f � IPc logn and applying (4)
and (5).

Again, Theorem 1.7 is a polynomial improvement on previous work,
the best previous result being a power of 8/3 separation implicit
in [28].

Fourier Weight of Decision Trees. It is straightforward to verify that
a uniformly random input x 2 ({�1, 1}n )k is with high probabil-
ity a negative instance of the rorrelation problem fn,k ,U . With
this in mind, Tal [28] proves his lower bound for rorrelation by
constructing a probability distribution Dn,k ,U that generates pos-
itive instances of fn,k ,U with nontrivial probability yet is indis-
tinguishable from the uniform distribution by a decision tree T of
cost n2/3�O (1/k ). His notion of indistinguishability is based on the
Fourier spectrum. Speci�cally, Tal [28] shows that: (i) the sum of the
absolute values of the Fourier coe�cients ofT of given order ` does
not grow too fast with `; and (ii) the maximum Fourier coe�cient
ofDn,k ,U of order ` decays exponentially fast with `. In Tal’s paper,
the bound for (ii) is essentially optimal, whereas the bound for (i) is
far from tight. The sum of the absolute values of the order-` Fourier
coe�cients of a decision tree T , which we refer to as the `-Fourier
weight of T , is shown in [28] to be at most

c`
q
d`(1 + logkn)`�1, (6)

where d is the depth of the tree and c > 1 is an absolute constant.
This bound is strong for any constant ` but degrades rapidly as
` grows. In particular, for ` =

p
d already, (6) is weaker than the

trivial bound
�d
`

�
. This is a major obstacle since the indistinguisha-

bility proof requires strong bounds for every `. This obstacle is
the reason why Tal’s analysis gives the randomized query lower
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bound n2/3�O (1/k ) as opposed to the optimal �̃(n1�1/k ). Tal con-
jectured that the `-Fourier weight of a depth-d decision tree is in

fact bounded by c`
q�d

`

�
(1 + logkn)`�1, which is a factor of

p
`! im-

provement on (6) and essentially optimal. We prove his conjecture:

T������ 1.8. LetT : {�1, 1}n ! {0, 1} be a function computable
by a decision tree of depth d . Then

’
S ✓{1,2, ...,n }:

|S |=`

|T̂ (S)| 6 c`

s✓
d

`

◆
(1 + logn)`�1, ` = 1, 2, . . . ,n,

where c > 1 is an absolute constant.

It is well known and easy to show that Theorem 1.8 is essentially
tight, even for nonadaptive decision trees [19, Theorem 5.19]. The ac-
tual statement that we prove is more precise and takes into account
the density parameter P[T (x) , 0]; see Theorem 4.12 for details.
With Theorem 1.8 in hand, all our main results (Theorem 1.1 and
its corollaries) follow immediately by combining the new bound on
the Fourier weight of decision trees with Tal’s near-optimal bounds
on the individual Fourier coe�cients of Dn,k ,U .

Theorem 1.8 is of interest in its own right, independent of its
use in this paper to obtain optimal quantum-classical separations.
The study of the Fourier spectrum has a variety of applications in
theoretical computer science, including circuit complexity, learn-
ing theory, pseudorandom generators, and quantum computing.
Even prior to Tal’s work, the `-Fourier weight of decision trees was
studied for ` = 1 by O’Donnell and Servedio [20], who proved the
tight O(

p
d) bound and used it to give a polynomial-time learning

algorithm for monotone decision trees. Fourier weight has been
studied for various other classes of Boolean functions, including
bounded-depth circuits, branching programs, low-degree polyno-
mials over �nite �elds, and functions with bounded sensitivity; see
the recent papers [11, 12, 15, 26, 27] and the references therein.

1.3 Limitations of Previous Analyses
In this part, we overview Tal’s bound on the `-Fourier weight of
decision trees. To build intuition, it is helpful to �rst examine the
case ` = 1, due to O’Donnell and Servedio [20] and Tal [28]. For
simplicity, consider a perfect treeT of depth d with leaves labeled 0
and 1,where the i-th variable queried in each path is xi . Throughout
this discussion, we identify a decision tree with the function that
it computes, and use the same variable for both. By negating the
variables if necessary, we may assume that T̂ (i) > 0. In particular,

n’
i=1

|T̂ (i)| = E
x

"
T (x)

d’
i=1

xi

#
.

This gives a new perspective on
Õ |T̂ (i)| in terms of the random

experiment whereby one picks a random root-to-leaf path, sums
all the variables in that path, and multiplies the result by the label
of the leaf. The expected value of this experiment equals

Õ |T̂ (i)|.
It is clear that this value is maximized when the leaves labeled 1
correspond to paths with large sums. With this observation [28],
one can verify that

n’
i=1

|T̂ (i)| = O
✓
p

r
d ln

e

p

◆
, (7)

where p = P[T (x) , 0] is the fraction of nonzero leaves, which we
refer to as the density of T . By linearity, the same argument applies
even to adaptive trees.

Tal’s analysis for ` > 2 is a natural inductive generalization
of the above argument. Let T be an arbitrary tree in variables
x1, x2, . . . , xn . Let Vi denote the set of internal nodes in T labeled
by the variable xi . The key notion is that of the contraction ofT with
respect to xi , which is a tree denoted byTi with real-valued labels at
the leaves. This treeTi is formed by the following two-step process:
(i) for each path that does not query xi , set the leaf label to 0; and
(ii) for each � 2 Vi , replace the subtree T� rooted at � by a single
leaf labeled by the Fourier coe�cient T̂� (i). The n contractions of
T give rise to the decomposition

’
|S |=`

|T̂ (S)| 6
n’
i=1

’
|S |=`�1

|T̂i (S)|, (8)

which is the foundation of Tal’s inductive argument. The real-valued
labels of the Ti present no di�culty since one can replace each
such label by its binary expansion and thus write Ti as a linear
combination of trees with binary labels. The key parameter in Tal’s
inductive proof is density, and it needs to bemaintained carefully for
each of the trees involved. Since the contractions of T can overlap
in complicated ways, it becomes increasingly di�cult to accurately
keep track of the densities. This translates into progressively larger
losses at each step of the inductive argument. Cumulatively, the
argument incurs an extraneous factor of

p
`! in the �nal bound.

Despite considerable e�orts, we were not able to �nd a way forward
within this framework.

1.4 Our Approach
To obtain the near-optimal bound in Theorem 1.8, we adopt
a completely di�erent approach. At a high level, we partitionÕ

|S |=` |T̂ (S)| into well-structured parts.We discuss the partitioning
strategy �rst, and then our analysis of each part in the partition.

The Partition. Let T be a perfect tree of depth d .We think of the
vertices at any given depth as forming a layer, and we number
the layers of T consecutively 1 through d . Consider a grouping of
the layers into ` disjoint blocks I1, I2, . . . , I` ✓ {1, 2, . . . ,d}, where
each block consists of consecutive layers from T , and the union
I1[I2[· · ·[I` may be a proper subset of {1, 2, . . . ,d}. As a canonical
example, we could partition the layers into ` blocks of roughly
equal size. Viewed as a function, T is the sum of the characteristic
functions of the root-to-leaf paths, each such path weighted by the
corresponding leaf. If one alters this sum by keeping, for each path,
only those Fourier coe�cients that have exactly one variable in
each block, the result is a real-valued function which we denote by
T |I1⇤I2⇤· · ·⇤I` . Here we de�ne I1 ⇤ I2 ⇤ · · · ⇤ I` = {S 2

�[d ]
`

�
: |S \ Ii | =

1 for each i}, and we refer to any such family of sets in
�[d ]
`

�
as an

elementary family. Our challenge is to �nd an e�cient partition of�[d ]
`

�
into elementary families E1, E2, . . . , EN . Then

T |([d ]` )
=

N’
i=1

T |Ei , (9)

and we can bound the Fourier weight of the degree-` homogeneous
part of T by bounding that of T |Ei for each i . For the proof of
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Theorem 1.8, we need a partition that achieves

N’
i=1

p
|Ei | 6 C`

s✓
d

`

◆
(10)

for an absolute constant C > 1. Such a partition would be essen-
tially extremal due to the trivial lower bound

Õp
|Ei | >

�d
`

�1/2
for

every partition of
�[d ]
`

�
. Unfortunately, with elementary families

de�ned as above, such a partition does not exist! For the sake of
simplicity, we ignore this complication altogether in the remainder
of this discussion. In the actual proof, we resolve this issue by al-
lowing elementary families to contain up to two variables per block.
This makes the rest of the proof more delicate, but still su�ces for
the purposes of proving Theorem 1.8. We give a �rst-principles
combinatorial construction of a partition with (10) in Section 3.

Analysis of Individual Parts. For any elementary family E = I1 ⇤ I2 ⇤
· · · ⇤ I`, we prove that T |E has Fourier weightq

|E | ·O(logn)`�1. (11)

Along with (9) and (10), this immediately implies Theorem 1.8. In
this overview, we will focus on the special case

|I1 | = |I2 | = · · · = |I` | =
d

`
.

Our bound (11) uses a generalization of decision trees where the
leaves can be labeled by polynomials. With this generalization, we
can further de�ne tree addition, as well as tree multiplication by
polynomials. This provides a powerful framework for decomposing
trees and expressing them as conical combinations of simpler trees.
To see how this generalization comes into play, consider the subtree
T� rooted at some node � in the �rst layer of I` . By the structure
of T |E , the only relevant aspect of T� is its degree-1 homogeneous
part. Therefore, T� can be replaced with its degree-1 homogeneous
part. Now, letT 0 be the decision tree obtained by contracting every
node � in the �rst layer of I` into a leaf labeled by the polyno-
mial

Õn
i=1 T̂� (i)xi .We show that analyzing the Fourier weight of

T |I1⇤I2⇤· · ·⇤I` is equivalent to analyzing that ofT 0 with respect to the
smaller elementary family I1 ⇤ I2 ⇤ · · · ⇤ I`�1. The latter is a delicate
task, and our solution involves three stages.

(i) In the �rst stage, we group leaves � in T 0 according to the
density �� of the original subtree T� . Observe that

n’
i=1

|T̂� (i)| 6 c 0��

s
d

`
ln

e

��

for some constant c 0 > 1. We decompose T 0 =
Õ1
j=0T

0
j ,

where T 0
j keeps a leaf � if �� 2 (3�j�1, 3�j ] and replaces it

with 0 otherwise.
(ii) In the second stage, we further decompose T 0

j as follows.
Let �j be the fraction of nonzero leaves in T 0

j , and letm be
the maximum Fourier weight of a nonzero leaf � of T 0

j .We
then expressT 0

j as the conical combinationT 0
j =

Õ1
r=1 crT

0
j ,r

such that:
Õ
cr =m; each nonzero leaf ofT 0

j ,r is labeled with
some variable or its negation; and the fraction of nonzero
leaves in each T 0

j ,r is �j .

(iii) In the �nal stage, we decompose T 0
j ,r into n di�erent trees

according to the n variables: T 0
j ,r =

Õn
i=1T

0
j ,r ,i · xi . The tree

T 0
j ,r ,i keeps only those leaves � that are labeled by ±xi , and
the new label is exactly the sign of the variable xi . Now
T 0
j ,r ,i : {�1, 1}n ! {�1, 0, 1} has density �j/n on average,
and T 0

j ,r ,i |I1⇤I2⇤· · ·⇤I`�1 can be analyzed using the inductive
hypothesis.

Of the three stages, the �rst stage is the least natural but crucial.
To see this, let ` = 2 and consider the following extreme case: for
all nonzero leaves � in T 0, the densities �� are equal, �� = � . Let
p denote the density of T . Then there is some j such that T 0 = T 0

j ,
and T 0

j has density p/� . Consequently, T 0
j ,r ,i has density p/(n�) on

average. The 1-Fourier weight ofT 0
j ,r ,i for average i can be bounded

by

c 0 · p

n�

s
d

2
ln

en�

p
.

The Fourier weight of T 0 |{1,2, ...,d/2}⇤{d/2+1,d/2+2, ...,d } can then
be bounded by

c 0 · �
r

d

2
ln

e

�
·
n’
i=1

c 0 · p

n�

s
d

2
ln

en�

p

= (c 0)2 · p

s✓
d

2

◆2
ln

e

�
· ln en�

p
. (12)

The corresponding bound for ` = 2 that Tal obtains is

O

✓
p

r
d2 ln

e

p
· ln en

p

◆
.

Comparing it with our bound (12) shows that for � � p, our factor
ln e

� is substantially smaller than Tal’s corresponding factor ln e
p ;

while for � close to p, our factor ln en�
p is substantially smaller

than Tal’s ln en
p . This is the intuitive reason why the �rst stage

allows us to avoid the
p
`! loss. Its surprising power comes from

the framework of elementary families set up at the beginning of
the proof.

1.5 Independent Work by Bansal and Sinha
Independently and concurrently with our work, Bansal and
Sinha [4] also obtained an optimal, dk/2e versus �̃(n1�1/k ) sep-
aration of quantum and randomized query complexity. Their result
uses completely di�erent techniques and is incomparable with ours.
In more detail, Bansal and Sinha [4] construct a function f with
randomized query complexity

R 1
2��

(f ) = �

 
� 2

k29
·
✓

n

log(k + n)

◆1� 1
k
!
, 8� 2 [0, 1/2]. (13)

This is essentially the same as our lower bound on randomized
query complexity (Theorem 1.1):

R 1
2��

(fn,k ,U ) = �

 
� 2

k
· n1�

1
k

(logn)2� 1
k

!
, 8� 2 [0, 1/2].

In both cases, the function in question has a quantum query algo-
rithm with cost dk/2e and error 1

2 �2��(k ). In particular, for an arbi-
trary constant k > 1, the bounded-error quantum query complexity
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is at most dk/2e . (The original version of [4], released concurrently
with our paper, had a poorer error parameter: 12 � (logn)��(k ). But
the authors of [4] were able to improve it several weeks later to
match our error parameter, 12 � 2��(k ).)

The two approaches have incomparable strengths. To start with,
Bansal and Sinha [4] prove their lower bound for an explicit function
f (namely, the forrelation and rorrelation problems with a properly
chosen gap parameter), as opposed to the uniformly random choice
of fn,k ,U in this paper.

On the other hand, our analysis has the advantage of determining
the `-Fourier weight of decision trees. This result is of independent
interest beyond quantum computing, given the numerous recent ap-
plications of Fourier weight to learning theory and pseudorandom
generators. We believe that our techniques may be relevant to other
unresolved questions on the Fourier spectrum of Boolean functions.
The work in [4], by contrast, does not imply any improved bounds
on Fourier weight.

Another strength of our analysis is methodological. The proof
in [4] uses advanced analytic machinery, whereas our approach
is elementary and self-contained. Indeed, the only analytic fact
used in this paper and Tal [28] is the p.d.f. of the multivariate
normal distribution. With this simple toolkit, we obtain all the
same optimal quantum-classical separations for query complexity
and communication complexity as in [4].

2 PRELIMINARIES
2.1 General Notation
There are two common arithmetic encodings for the Boolean val-
ues: the traditional encoding false $ 0, true $ 1, and the Fourier-
motivated encoding false $ 1, true $ �1. Throughout this manu-
script, we use the former encoding for the range of a Boolean func-
tion and the latter for the domain. With this convention, Boolean
functions are mappings {�1, 1}n ! {0, 1} for some n.

We denote the empty string as usual by � . For an alphabet � and
a natural number n, we let �6n denote the set of all strings over �
of length up to n, so that �6n = {�}[�[�2[ · · ·[�n . For a string
� over a given alphabet, we let |� | denote the length of � . For a set
S, we let� |S denote the substring of� indexed by the elements of S .
In other words, � |S = �i1�i2 · · ·�i |S | where i1 < i2 < · · · < i |S | are
the elements of S . In the same spirit, we de�ne �6i = �1�2 . . .�i .

The power set of a set S is denoted by P(S). For a set S and a
nonnegative integer k, we let

�S
k
�
denote the family of subsets of S

that have cardinality exactly k :✓
S

k

◆
= {S 0 ✓ S : |S 0 | = k}.

We further de�ne

Pn,k =

✓{1, 2, . . . ,n}
k

◆
= {S ✓ {1, 2, . . . ,n} : |S | = k}.

The following well-known bound [18, Proposition 1.4] is used in
our proofs without further mention:

⇣n
k

⌘k
6

✓
n

k

◆
6

⇣en
k

⌘k
, k = 1, 2, . . . ,n, (14)

where e = 2.7182 . . . denotes Euler’s number.

We adopt the standard notation N = {0, 1, 2, 3, . . .} and Z+ =
{1, 2, 3, . . .} for the sets of natural numbers and positive integers, re-
spectively. We adopt the extended real number systemR[{�1,1}
in all calculations. The functions lnx and logx stand for the nat-
ural logarithm of x and the logarithm of x to base 2, respectively.
To avoid excessive use of parentheses, we follow the notational
convention that lna1a2 . . . ak = ln(a1a2 . . . ak ) for any factors
a1,a2, . . . ,ak . The binary entropy function H : [0, 1] ! [0, 1] is
given by

H (x) = x log
1
x
+ (1 � x) log 1

1 � x
.

Basic calculus reveals that

H (x) 6 1 � 2
ln 2

✓
x � 1

2

◆2
. (15)

For nonempty sets A,B ✓ R, we write A < B to mean that a < b
for all a 2 A, b 2 B. It is clear that this relation is a partial order on
nonempty subsets of R.We use the standard de�nition of the sign
function:

sgnx =

8>>><
>>>:

�1 if x < 0,
0 if x = 0,
1 if x > 0.

For a �nite set X , we let RX denote the family of real-valued func-
tions on X . For f ,� 2 RX , we let f · � 2 RX denote the pointwise
product of f and �, with (f ·�)(x) = f (x)�(x).We use the standard
inner product hf ,�i = Õ

x 2X f (x)�(x).

2.2 Fourier Transform
Consider the real vector space of functions {�1, 1}n ! R. For S ✓
{1, 2, . . . ,n}, de�ne �S : {�1, 1}n ! {�1, 1} by �S (x) =

Œ
i 2S xi .

Then

h�S , �T i =
(
2n if S = T ,
0 otherwise.

Thus, {�S }S ✓{1,2, ...,n } is an orthogonal basis for the vector space
in question. In particular, every function � : {�1, 1}n ! R has a
unique representation of the form

� =
’

S ✓{1,2, ...,n }
�̂(S)�S

for some reals �̂(S),where by orthogonality �̂(S) = 2�n h�, �S i. The
reals �̂(S) are called the Fourier coe�cients of �, and the mapping
� 7! �̂ is the Fourier transform of� . Put another way, every function
� : {�1, 1}n ! R has a unique representation as a multilinear
polynomial

�(x) =
’

S ✓{1,2, ...,n }
�̂(S)

÷
i 2S

xi , (16)

where the real numbers �̂(S) are the Fourier coe�cients of f . The
order of a Fourier coe�cient �̂(S) is the cardinality |S |.

For k = 0, 1, 2, . . . ,n,we introduce the operator Lk : R{�1,1}
n !

R{�1,1}
n
that linearly sends a function � : {�1, 1}n ! R to the

function Lk� : {�1, 1}n ! R given by

(Lk�)(x) =
’

S 2Pn,k

�̂(S)�S (x).

We refer to Lk� as the degree-k homogeneous part of � .
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For any polynomial p 2 R[x1, x2, . . . , xn ], we let |||p ||| denote the
sum of the absolute values of the coe�cients ofp.One easily veri�es
the well-known fact that ||| · ||| is a norm on the polynomial ring
R[x1, x2, . . . , xn ].We identify a function � : {�1, 1}n ! R with its
unique representation (16) as a multilinear polynomial, to the e�ect
that

|||� ||| =
’

S ✓{1,2, ...,n }
|�̂(S)|

is the sum of the absolute values of the Fourier coe�cients of � .

P���������� 2.1. For any functions �,� : {�1, 1}n ! R and
reals a,b, one has

|||a� + b� ||| 6 |a | |||� ||| + |b | |||� |||.

A proof of this proposition is available in the full version of our
paper [23]. We will frequently use the norm ||| · ||| in conjunction
with the operator Lk to refer to the sum of the absolute values of
the Fourier coe�cients of given order k :

|||Lk � ||| =
’

S 2Pn,k

|�̂(S)|.

2.3 Generalized Decision Trees
Throughout this manuscript, we assume decision trees to be perfect
binary trees, with each internal node having two children and all
leaves having the same depth. This convention is without loss of
generality since a decision tree computing a given function f can
be made into a perfect binary tree for f of the same depth, by
querying dummy variables as necessary. We denote the variables of
a decision tree by x1, x2, . . . , xn 2 {�1, 1}, and identify the vertices
of a decision tree in the natural manner with strings in {�1, 1}⇤.
Thus, � denotes the root of the tree, and a string � 2 {�1, 1}k
denotes the vertex at depth k reached from the root by following
the path �1�2 . . .�k . Formally, a decision tree of depth d in Boolean
variables x1, x2, . . . , xn 2 {�1, 1} is a functionT on {�1, 1}6d with
the following two properties.

(i) One has T (�) 2 {1, 2, . . . ,n} for every � 2 {�1, 1}6d�1,
with the interpretation that T (�) is the index of the
variable queried at the internal node found by follow-
ing the path � = �1�2�3 . . . from the root of the de-
cision tree. We note that a variable cannot be queried
twice on the same path, and therefore the d numbers
T (�),T (�1),T (�1�2), . . . ,T (�1�2 . . .�d�1) are pairwise dis-
tinct for every � 2 {�1, 1}d�1.

(ii) One has T (�) 2 R[x1, x2, . . . , xn ] for every � 2 {�1, 1}d ,
with the interpretation that T (�) is the label of the leaf
reached by following the path � = �1�2 . . .�d from the root
of the tree. Thus, every leaf is labeled with a real-valued poly-
nomial in the input variables x1, x2, . . . , xn . At a given leaf
� 2 {�1, 1}d , the variables xT (� ), xT (�1), . . . , xT (�1�2 ...�d�1)
have been queried and therefore have �xed values. For this
reason, we require T (�) to be a real polynomial in variables
other than xT (� ), xT (�1), . . . , xT (�1�2 ...�d�1). We refer to a
leaf � 2 {�1, 1}d as a nonzero leaf if T (�) is not the zero
polynomial. While we formally allow arbitrary real polyno-
mials, the identity x2i = xi e�ectively forces T (�) for each
� 2 {�1, 1}d to be multilinear.

Our formalism generalizes the traditional notion of a decision tree,
where the leaf labels are restricted to the Boolean constants 0, 1.

P���������� 2.2. Let T be a given decision tree of depth d . Then
the function f : {�1, 1}n ! R computed by T is given by

f (x) =
’

� 2{�1,1}d
T (�) ·

d÷
i=1

1 +�ixT (�1�2 ...�i�1)
2

. (17)

We emphasize that T (�) here is a polynomial in x1, x2, . . . , xn and
not necessarily a constant value. In fact, the norm |||T (�)||| for leaves
� is a prominent quantity in this paper.

P����. For an input x 2 {�1, 1}n and a leaf � 2 {�1, 1}d , the
product

d÷
i=1

1 +�ixT (�1�2 ...�i�1)
2

evaluates to 1 if the input x reaches the leaf � in T , and evaluates
to 0 otherwise. Recall that any given input x reaches precisely
one leaf �, and the output of the tree on x is de�ned to be the
corresponding polynomial T (�) 2 R[x1, x2, . . . , xn ] evaluated at x .
Thus, (17) evaluates to T (�) where � is the leaf reached by x .

For a decision treeT of depth d,we let dns(T ) denote the fraction
of leaves in T with nonzero labels:

dns(T ) = P
� 2{�1,1}d

[T (�) , 0].

We refer to this quantity as the density of T . Another important
complexity measure is the degree of T , denoted deg(T ) and de-
�ned as the maximum of the degrees of the polynomials T (�) 2
R[x1, x2, . . . , xn ] for � 2 {�1, 1}d . Recall that the zero polyno-
mial 0 is considered to have degree �1. For an internal node
� 2 {�1, 1}6d�1, we let T� denote the subtree of T rooted at � .
Thus, T� is the tree of depth d � |� | given by T� (u) = T (�u) for
all u 2 {�1, 1}6d� |� | . The following fact is straightforward and
well-known.

F��� 2.3. Let T be a given decision tree of degree at most 0. Let
f : {�1, 1}n ! R be the function computed by T . Then

P
x 2{�1,1}n

[f (x) , 0] = dns(T ).

P����. Let d be the depth of T . Since T is a perfect binary tree,
the fraction of inputs x 2 {�1, 1}n that reach any given leaf of T
is exactly 2�d . Therefore, the probability that a random input x 2
{�1, 1}n reaches a leaf with a nonzero label is precisely the fraction
of leaves with nonzero labels, which is by de�nition dns(T ).

We will be working with special classes of trees described by
several parameters. Speci�cally, we let T (n,d,p,k) denote the set
of all trees in n Boolean variables x1, x2, . . . , xn 2 {�1, 1} of depth
d and density p such that for every leaf � 2 {�1, 1}d , the label
T (�) is either the zero polynomial 0 or a homogeneous multilinear
polynomial of degreek . We further de�neT ⇤(n,d,p,k) to be the set
of all trees T 2 T (n,d,p,k) that have the additional property that
T (�) 2 {0} [ {±Œ

i 2S xi : S 2 Pn,k } for every leaf � 2 {�1, 1}d .
Thus, every nonzero leaf in a tree T 2 T ⇤(n,d,p,k) is labeled with
a signed monomial of degree k .
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The Fourier spectrum of decision trees has been studied in several
works, as discussed in the introduction. We will need the following
special case of a result due to Tal [28, Theorem 7.5].

T������ 2.4 (T��). Let f : {�1, 1}n ! {�1, 0, 1} be given, f . 0.
De�ne p = Px 2{�1,1}n [f (x) , 0]. Suppose that f can be computed
by a depth-d decision tree. Then

|||L1 f ||| 6
✓
d

1

◆1/2
Cp

r
ln

e

p
,

|||L2 f ||| 6
✓
d

2

◆1/2
C2p

r
ln

e

p

r
ln

en

p
,

where C > 1 is an absolute constant.

Tal states his result for functions f : {�1, 1}n ! {0, 1} rather than
f : {�1, 1}n ! {�1, 0, 1}. But Theorem 2.4 follows immediately
by writing f = f + � f �, where f +, f � : {�1, 1}n ! {0, 1} are the
positive and negative parts of f , and applying Tal’s result separately
to f + and f �.

3 ELEMENTARY SET FAMILIES
As explained in the introduction, we obtain our Fourier weight
bound by combining the Fourier coe�cients of a decision tree into
well-structured groups and bounding the sum of the absolute values
in each group. In this section, we lay the combinatorial groundwork
for this result by proving that Pn,k can be e�ciently partitioned
into what we call “elementary families.”

For set families A ,B ✓ P(Z), we de�ne A ⇤ B = {A [ B :
A 2 A ,B 2 B}. We collect basic properties of this operation in
the proposition below.

P���������� 3.1. Let A ,B,C ✓ P(Z) be given. Then:
(i) A ⇤? = ? ⇤ A = ?;
(ii) A ⇤ {?} = {?} ⇤ A = A ;
(iii) (A ⇤ B) ⇤ C = A ⇤ (B ⇤ C );
(iv) A ⇤ B = B ⇤ A ;
(v) (A [ B) ⇤ C = (A ⇤ C ) [ (B ⇤ C ).

P����. All properties are immediate from the de�nition of the
⇤ operation.

We de�ne an integer interval to be any �nite set whose elements
are consecutive integers, namely, {i, i + 1, i + 2, . . . , j} for some
i, j 2 Z. As a special case, this includes the empty interval ?. An
elementary family is any family of the form

E =

✓
I1
k1

◆
⇤

✓
I2
k2

◆
⇤ · · · ⇤

✓
I`
k`

◆
, (18)

where ` is a positive integer, I1, I2, . . . , I` are pairwise disjoint in-
teger intervals, and k1,k2, . . . ,k` 2 {0, 1, 2}. Trivial examples of
elementary families are

�?
0
�
= {?} and

�?
1
�
= ?. Another exam-

ple of an elementary family is the singleton family {A} for any
nonempty �nite setA ✓ Z, using {A} =

�{a1 }
1

�
⇤
�{a2 }

1
�
⇤ · · · ⇤

�{a` }
1

�
where a1 < a2 < · · · < a` are the distinct elements of A.We now
de�ne a partition measure that captures how e�ciently a family
can be partitioned into elementary families.

De�nition 3.2 (Partitionmeasure � ). For anyA ✓ P({1, 2, . . . ,n}),
de�ne � (A ) to be the minimum

N’
i=1

|Ei |1/2 (19)

over all integers N and all elementary families E1, E2, . . . , EN that
are pairwise disjoint and satisfy E1 [ E2 [ · · · [ EN = A .

Straight from the de�nition, � (?) = 0 and � ({?}) = 1. More
generally,

|A |1/2 6 � (A ) 6 |A | (20)
for everyA ✓ P({1, 2, . . . ,n}). The upper bound here corresponds
to the trivial partition A =

–
A2A {A}. The lower bound holds

because (19) is no smaller than (Õ |Ei |)1/2 = |A |1/2.
Our analysis of the Fourier spectrum of decision trees relies on

the partition measure of the family Pn,k . To this end, we prove
the following near-tight upper bound in the full version of this
paper [23].

T������ 3.3. For some absolute constant c > 1 and all positive
integers n and k,

� (Pn,k ) 6
(2 +

p
2)k�1ck�1p
k

✓
2n
k

◆k/2
.

4 FOURIER SPECTRUM OF DECISION TREES
This section is devoted to the proof of our main result on the Fourier
spectrum of decision trees. Stated in its simplest terms, our result
shows that for any function f : {�1, 1}n ! {�1, 0, 1} computable
by a decision tree of depth d , the sum of the absolute values of the
Fourier coe�cients of order k is at most

Ck

s✓
d

k

◆
(1 + lnn)k�1,

where C > 1 is an absolute constant that does not depend on
n,d,k . Sections 4.1–4.3 focus on partitioning the Fourier spectrum
of f into highly structured parts and analyzing each in isolation.
Section 4.4 then recombines these pieces using the machinery of
elementary families.

4.1 Slicing the Tree
Let T be a given decision tree of depth d in Boolean variables
x1, x2, . . . , xn . For a set family S ✓ P({1, 2, . . . ,d}), we de�ne a
real function T |S : {�1, 1}n ! R by

T |S (x) =
’
S 2S

’
� 2{�1,1}d

T (�) · 2�d
÷
i 2S

�ixT (�1�2 ...�i�1). (21)

A straightforward but crucial observation is that T |S is additive
with respect to S , in the following sense.

P���������� 4.1. LetT be a depth-d decision tree. Let S 0,S 00 ✓
P({1, 2, . . . ,d}) be set families with S 0 \ S 00 = ?. Then

T |S 0[S 00 = T |S 0 +T |S 00 .

P����. Immediate by taking S = S 0 [ S 00 in the de�ning
equation (21).

The relevance of (21) to the Fourier spectrum of decision trees is
borne out by the following lemma.
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L���� 4.2. Let T be a decision tree of depth d and degree at most
0, computing a function f : {�1, 1}n ! R. Then

Lk f = T |Pd ,k , k = 0, 1, 2, . . . ,n.

P����. By Proposition 2.2,

f (x) =
’

� 2{�1,1}d
T (�) ·

d÷
i=1

1 +�ixT (�1�2 ...�i�1)
2

=
’

� 2{�1,1}d
T (�) · 2�d

’
S ✓{1,2, ...,d }

÷
i 2S

�ixT (�1�2 ...�i�1)

=

d’
k=0

’
S 2Pd ,k

’
� 2{�1,1}d

T (�) · 2�d
÷
i 2S

�ixT (�1�2 ...�i�1).

(22)

Since deg(T ) 6 0, the coe�cients T (�) for � 2 {�1, 1}d are real
numbers. Moreover, for any � 2 {�1, 1}d and S ✓ {1, 2, . . . ,d}, the
de�nition of a decision tree ensures that

Œ
i 2S �ixT (�1�2 ...�i�1) is

a signed monomial of degree |S |.We conclude from (22) that the
degree-k homogeneous part of f is

Lk f =
’

S 2Pd ,k

’
� 2{�1,1}d

T (�) · 2�d
÷
i 2S

�ixT (�1�2 ...�i�1)

= T |Pd ,k .

In particular, Lk f = 0 for k > d + 1.

4.2 Analytic Preliminaries
For positive integersm and k , de�ne

�m,k (p) =

8>>>>>>>>>><
>>>>>>>>>>:

0 if p = 0,

p

s✓
1
k
ln

ekmk�1

p

◆k
if 0 < p 6 1/m,

p

s✓
ln

e

p

◆
(ln em)k�1 if 1/m < p 6 1.

Our bound for the Fourier spectrum of decision trees is in terms of
this function. As preparation for our main result, we now collect
the analytic properties of �m,k that we will need.

L���� 4.3. Letm and k be any positive integers. Then:
(i) �m,k is continuous on [0, 1];
(ii) �m,k is monotonically increasing on [0, 1];
(iii) �m,k is concave on [0, 1].

We refer the reader to the full version of our paper [23] for the proof
of Lemma 4.3 and of all other results in this section. The function
�m,k arises as the solution to a natural optimization problem, which
we now describe.

L���� 4.4. Letm and k be positive integers. Then for 0 < p 6 1,
�m,k (p) equals

pmax

( k÷
i=1

p
ln exi : xi > 1 and x1x2 . . . xi 6

mi�1

p
for all i

)
.

This optimization view of �m,k implies a host of useful facts that
would be bothersome to prove directly. We state them as corollaries
below.

C�������� 4.5. Let m and k be positive integers. Then for all
p,q 2 [0, 1],

q�m,k (p) 6 �m,k (pq).
C�������� 4.6. Letm,k, ` be positive integers. Then for all p,q 2

[0, 1],
�m,k (p)�m,`

⇣ q
m

⌘
6

�m,k+`(pq)
m

.

C�������� 4.7. Let m and k be positive integers. Then for all
p 2 [0, 1],

�m,k (p) 6
q
2kp · �m,k (

p
p).

4.3 Contiguous Intervals
We have reached a focal point of this paper, where we analyze T |E
for arbitrary decision trees T and “canonical” elementary families
E . The families that we allow are those of the form

E =

✓
I1
k1

◆
⇤

✓
I2
k2

◆
⇤ · · · ⇤

✓
I`
k`

◆
,

where k1,k2, . . . ,k` 2 {1, 2} and the integer intervals I1, I2, . . . , I`
form a partition of {1, 2, . . . ,d} with d being the depth of T . The
proof proceeds by induction on `. We will later generalize this
result to arbitrary elementary families E and, from there, to all of
Pd ,k via the results of Section 3.

T������ 4.8. Let T 2 T ⇤(n,d,p, 0) be given, for some 0 6 p 6
1 and integers n,d > 1. Let ` > 1. Let I1, I2, . . . , I` be pairwise
disjoint integer intervals with I1 [ I2 [ · · · [ I` = {1, 2, . . . ,d}, and
let k1,k2, . . . ,k` 2 {1, 2}. Abbreviate k = k1 + k2 + · · · + k` . Then����

����
����T |( I1k1)⇤( I2k2)⇤· · ·⇤( I`k`)

����
����
���� 6 2Ck 12`�1�n2,k (p)

÷̀
i=1

✓ |Ii |
ki

◆1/2
, (23)

where C > 1 is the absolute constant from Theorem 2.4.

P����. The proof is by induction on `. The base case ` = 1
corresponds to I1 = {1, 2, . . . ,d}. Let f : {�1, 1}n ! {�1, 0, 1} be
the function computed by T . If f ⌘ 0, we have T |( I1k1)

⌘ 0 and the

bound holds trivially. In the complementary case f . 0, recall from
Fact 2.3 that

P
x 2{�1,1}n

[f (x) , 0] = p. (24)

Then

|||T |( I1k1)
||| = |||Lk1 f |||

6
✓ |I1 |
k1

◆1/2
Ck1p

k1÷
i=1

s
ln

eni�1

p

6
✓ |I1 |
k1

◆1/2
· 2Ck1p

k1÷
i=1

s
ln

eni�1p
p

6
✓ |I1 |
k1

◆1/2
· 2Ck1�n2,k1 (p)

=

✓ |I1 |
k1

◆1/2
· 2Ck�n2,k (p),

where the �rst step is valid by Lemma 4.2; the second step uses
Theorem 2.4 along with (24) and k1 6 2; and the fourth step applies
Lemma 4.4. This settles the base case.
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We now turn to the inductive step, ` > 2. If kj > |Ij | for
some j, then T |( I1k1)⇤(

I2
k2
)⇤· · ·⇤( I`k`)

= T |? = 0, and the claimed bound

holds trivially. We may therefore assume that kj 6 |Ij | for ev-
ery j = 1, 2, . . . , `. This means in particular that the intervals
I1, I2, . . . , I` are nonempty. Furthermore, by renumbering the in-
tervals if necessary, we may assume that I1 < I2 < · · · < I` . Put
d 0 = max I`�1, so that I` = {d 0 + 1,d 0 + 2, . . . ,d}. Abbreviate

S 0 =
✓
I1
k1

◆
⇤

✓
I2
k2

◆
⇤ · · · ⇤

✓
I`�1
k`�1

◆
,

S = S 0 ⇤
✓
I`
k`

◆
.

For j = 0, 1, 2, . . . , de�ne a depth-d 0 decision tree T 0
j by

T 0
j (�) =

8>>>><
>>>>:

T (�) if � 2 {�1, 1}6d 0�1,
T� |({1,2, . . ., |I` |}k`

) if � 2 {�1, 1}d 0
and 1

3 j+1 <dns(T� )6
1
3 j ,

0 otherwise.

Observe that T 0
j is a valid decision tree in that for every leaf � 2

{�1, 1}d 0
, the labelT 0

j (�) 2 R[x1, x2, . . . , xn ] is a function that does
not depend on any of the variables

xT (� ), xT (�1), xT (�1�2), . . . , xT (�1�2 ...�d0�1) (25)

queried along the path from the root to � . Indeed, recall from
Lemma 4.2 thatT� |({1,2, . . ., |I` |}k`

) is the k`-th homogeneous part of the

function computed by the subtree T� , which by de�nition does not
use any of the variables (25). We also note that all but �nitely many
of the trees T0,T1,T2, . . . are identically zero; however, working
with the in�nite sequence is more convenient from the point of
view of notation and calculations.

The weighted densities of T 0
0,T

0
1,T

0
2, . . . are given by

1’
j=0

3�j dns(T 0
j ) =

1’
j=0

3�j P
� 2{�1,1}d0

[T 0
j (�) , 0]

6
1’
j=0

3�j P
� 2{�1,1}d0

[3�j�1 < dns(T� ) 6 3�j ]

6 3 E
� 2{�1,1}d0

dns(T� )

= 3 dns(T )
= 3p. (26)

The relevance of T 0
j to our analysis of T |S is clear from the follow-

ing claims, whose proofs are available in the full version of this
paper [23].

C���� 4.9. T |S =
Õ1
j=0T

0
j |S 0 .

C���� 4.10. Let j = 0, 1, 2, . . . be given. Then |||T 0
j |S 0 ||| is at most

8Ck 12`�2
✓ |I1 |
k1

◆1/2
· · ·

✓ |I` |
k`

◆1/2
·
p
3�j�n2,k (

p
3�j dns(T 0

j )).

We now complete the proof of the theorem. Set s =
Õ1
i=0

p
3�i =

2.3660 . . . . Then
1’
j=0

p
3�j�n2,k (

p
3�j dns(T 0

j )) = s
1’
j=0

p
3�j

s
�n2,k (

p
3�j dns(T 0

j ))

6 s�n2,k
©≠
´
1’
j=0

p
3�j

s
·
p
3�j dns(T 0

j )
™Æ
¨

6 3�n2,k
©≠
´
s

3

1’
j=0

p
3�j

s
·
p
3�j dns(T 0

j )
™Æ
¨

6 3�n2,k (p), (27)

where the second step is valid by Lemma 4.3 (iii); the third step uses
Corollary 4.5 with q = s/3; and the �nal step is justi�ed by (26) and
Lemma 4.3 (ii). As a result,

|||T |S ||| 6
1’
j=0

|||T 0
j |S 0 |||

6 8Ck 12`�2
✓ |I1 |
k1

◆1/2
· · ·

✓|I` |
k`

◆1/2 1’
j=0

p
3�j�n2,k (

p
3�j dns(T 0

j ))

6 2Ck 12`�1
✓ |I1 |
k1

◆1/2
· · ·

✓|I` |
k`

◆1/2
�n2,k (p),

where the �rst step is valid by Proposition 2.1 and Claim 4.9, bearing
in mind once again that all but �nitely many of the T 0

j |S 0 are
identically zero; the second step is a substitution from Claim 4.10;
and the �nal step uses (27). This completes the inductive step.

4.4 Main Result
En route to ourmain result on the Fourier spectrum of decision trees,
we now generalize Theorem 4.8 to arbitrary elementary families E .

T������ 4.11. Let T 2 T ⇤(n,d,p, 0) be given, for some 0 6 p 6
1 and integers n,d > 1. Let k be an integer with 1 6 k 6 d . Then
every elementary family E ✓ Pd ,k satis�es

|||T |E ||| 6 (12C)k�n2,k (p)
p
|E |, (28)

where C > 1 is the absolute constant from Theorem 2.4.

The proof of this result is available in the full version of our pa-
per [23]. We now obtain our main result on the Fourier spectrum
of decision trees by combining Theorem 4.11 with an e�cient de-
composition of Pd ,k into elementary families (Theorem 3.3).

T������ 4.12. Let f : {�1, 1}n ! {�1, 0, 1} be a function com-
putable by a decision tree of depth d . De�ne p = Px 2{�1,1}n [f (x) ,
0]. Then

|||Lk f ||| 6
✓
d

k

◆1/2
(58Cc)k �n2,k (p), k = 1, 2, . . . ,n,

where C > 1 and c > 1 are the absolute constants from Theorem 2.4
and Theorem 3.3, respectively.

P����. Lemma 4.2 ensures that Lk f = 0 for k > d, so that the
theorem holds vacuously in that case. We now examine the com-
plementary possibility, 1 6 k 6 d . For some integer N > 1, The-
orem 3.3 gives a partition Pd ,k =

–N
i=1 Ei where E1, E2, . . . , EN
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are elementary families with
N’
i=1

|Ei |1/2 6 (2 + 2
p
2)kck

✓
d

k

◆k/2
. (29)

Fix a decision tree T of depth d that computes f . Then Fact 2.3
shows that T 2 T ⇤(n,d,p, 0). As a result,

|||Lk f ||| = |||T |Pd ,k |||

=

�����
�����
�����
N’
i=1

T |Ei

�����
�����
�����

6
N’
i=1

|||T |Ei |||

6
N’
i=1

(12C)k �n2,k (p)
p
|Ei |

6
✓
d

k

◆k/2
(58Cc)k �n2,k (p),

where the �rst step is valid by Lemma 4.2; the second step uses
Proposition 4.1; the third step uses Proposition 2.1; the fourth step
applies Theorem 4.11; and the �nal step substitutes the upper bound
from (29). In view of (14), the proof is complete.

Maximizing over 0 6 p 6 1,we establish the following clean bound
conjectured by Tal [28].

C�������� 4.13. Let f : {�1, 1}n ! {�1, 0, 1} be a function
computable by a decision tree of depth d . Then

|||Lk f ||| 6 Ck

s✓
d

k

◆
(1 + lnn)k�1, k = 1, 2, . . . ,n,

where C > 1 is an absolute constant.

P����. Recall from Lemma 4.3 (ii) that �n2,k (p) 6
p
(ln en2)k�1

for all 0 6 p 6 1. Now the claimed bound is immediate from
Theorem 4.12 after a change of constant C .

Corollary 4.13 settles Theorem 1.8 from the introduction. By con-
vexity (Proposition 2.1), Corollary 4.13 holds more generally for
any real function f : {�1, 1}n ! [�1, 1] computable by a decision
tree of depth d .

5 QUANTUM VERSUS CLASSICAL QUERY
COMPLEXITY

Using our newly derived bound for the Fourier spectrum of decision
trees, we will now prove the main result of this paper on quantum
versus randomized query complexity.

5.1 Quantum and Randomized Query Models
For a nonempty �nite set X , a partial Boolean function on X is a
mapping X ! {0, 1, ⇤}, where the output value ⇤ is reserved for
illegal inputs. Recall that a randomized query algorithm of cost d is
a probability distribution on decision trees of depth at most d . For
a (possibly partial) Boolean function f on the Boolean hypercube,
we say that a randomized query algorithm computes f with error
� if, for every input x 2 f �1(0) [ f �1(1), the algorithm outputs

f (x) with probability at least 1 � � . Observe that in this formalism,
the algorithm is allowed to exhibit arbitrary behavior on the illegal
inputs, namely, those in f �1(⇤). The randomized query complex-
ity R� (f ) is the minimum cost of a randomized query algorithm
that computes f with error � . The canonical setting of the error
parameter is � = 1/3. This choice is largely arbitrary because the
error of a query algorithm can be reduced in an e�cient manner by
running the algorithm several times independently and outputting
the majority answer. Quantitatively, the following relation follows
from the Cherno� bound:

R� (f ) 6 O

✓
1
� 2

log
1
�

◆
· R 1

2��
(f ) (30)

for all �,� 6 1/2.
These classical de�nitions carry over in the obvious way to

the quantum model. Here, the cost is the worst-case number of
quantum queries on any input, and a quantum algorithm is said
to compute f with error � if, for every input x 2 f �1(0) [ f �1(1),
the algorithm outputs f (x) with probability at least 1 � � . The
quantum query complexity Q� (f ) is the minimum cost of a quantum
query algorithm that computes f with error � . For an excellent
introduction to classical and quantum query complexity, we refer
the reader to [8] and [29], respectively.

5.2 The Rorrelation Problem
We now formally state the problem of interest to us, Tal’s rorrela-
tion [28], which was brie�y reviewed in the introduction. Let n and
k be positive integers. For an orthogonal matrixU 2 Rn⇥n, consider
the multilinear polynomial �n,k ,U : ({�1, 1}n )k ! R given by

�n,k ,U (x1, x2, . . . , xk ) =
1
n
1|Dx1UDx2UDx3U · · ·UDxk 1, (31)

where 1 denotes the all-ones vector and Dxi denotes the diagonal
matrix with vector xi on the diagonal. In what follows, we treat the
sets ({�1, 1}n )k and {�1, 1}n⇥k interchangeably, thereby interpret-
ing the input to �n,k ,U as an n⇥k sign matrix. Let k · k2 denote the
Euclidean norm. Then for all x1, x2, . . . , xk 2 {�1, 1}n, we have

|�n,k ,U (x1, x2, . . . , xk )| =
1
n
h1,Dx1UDx2UDx3U · · ·UDxk 1i

6 1
n
k1k2 kDx1UDx2UDx3U · · ·UDxk 1k2

=
1
n
k1k2 k1k2

= 1, (32)

where the second step applies the Cauchy–Schwarz inequality,
and the third step is valid because each of the matrices involved
preserves the Euclidean norm. In particular, the multivariate poly-
nomial �n,k ,U ranges in [�1, 1] for all inputs. Generalizing the
forrelation problem of Aaronson and Ambainis [1], Tal [28] consid-
ered the partial Boolean function fn,k ,U : {�1, 1}n⇥k ! {0, 1, ⇤}
given by

fn,k ,U (x) =
8>>><
>>>:

1 if �n,k ,U (x) > 2�k ,
0 if |�n,k ,U (x)| 6 2�k�1,
⇤ otherwise.

Aaronson and Ambainis [1] showed that there is a quantum algo-
rithm with dk/2e queries whose acceptance probability on input
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x 2 {�1, 1}n⇥k is (�n,k ,H (x) + 1)/2, where H is the Hadamard
transform matrix. Their analysis generalizes to any orthogonal
matrix in place of H , to the following e�ect.

F��� 5.1 (T�� [28, C���� 3.1]). Let n and k be positive integers,
where n is a power of 2. Let U be an arbitrary orthogonal matrix.
Then there is a quantum query algorithm with dk/2e queries whose
acceptance probability on input x 2 {�1, 1}n⇥k is (�n,k ,U (x)+ 1)/2.

C�������� 5.2. Let n and k be positive integers, where n is a
power of 2. LetU be an arbitrary orthogonal matrix. Then

Q 1
2� 1

2k+4
(fn,k ,U ) 6

⇠
k

2

⇡
. (33)

In particular,
Q1/3(fn,k ,U ) 6 O(k4k ). (34)

P����. On input x, the query algorithm for (33) is as follows:
with probability p, run the algorithm of Fact 5.1 and output the
resulting answer; with complementary probability 1 � p, output
“no” regardless of x . By design, the proposed solution has query
cost at most dk/2e and accepts x with probability exactly

p ·
�n,k ,U (x) + 1

2
.

Wewant this quantity to be at most 1
2 �2�k�4 if�n,k ,U (x) 6 2�k�1,

and at least 1
2 + 2

�k�4 if �n,k ,U (x) > 2�k . These requirements are
both met for p = (1 + 3

2k+2 )
�1. In summary, fn,k ,U has a query

algorithm with error at most 1
2 � 2�k�4 and query cost dk/2e . To

reduce the error to 1/3, run this algorithm independently �(4k )
times and output the majority answer; cf. (30).

Corollary 5.2 shows that the rorrelation problem has small quan-
tum query complexity. By contrast, we will show that its random-
ized complexity is essentially the maximum possible. Speci�cally,
we will prove a near-linear lower bound on the randomized query
complexity of rorrelation by combining Tal’s work [28] with our
near-optimal bounds for the Fourier spectrum of decision trees.

In what follows, letUn,k denote the uniform probability distribu-
tion on {�1, 1}n⇥k . Applying Parseval’s identity to the multilinear
polynomial �n,k ,U gives:

F��� 5.3 (T�� [28, C���� 4.4]). Ex⇠Un,k [�n,k ,U (x)2] = 1/n.
The other result from [28] that we will need is as follows.

F��� 5.4 (T�� [28, L����� 5.6, 5.7, ��� C���� 4.1]). Let n and k
be positive integers. LetU 2 Rn⇥n be a uniformly random orthogonal
matrix. Then with probability 1 � o(1), there exists a probability
distribution Dn,k ,U on {�1, 1}n⇥k such that:

E
x⇠Dn,k ,U

�n,k ,U (x) >
✓
2
�

◆k�1
, (35)

E
x⇠Dn,k ,U

÷
(i , j)2S

xi , j = 0, |S | = 1, 2, . . . ,k � 1, (36)
������ E
x⇠Dn,k ,U

÷
(i , j)2S

xi , j

������ 6
✓
c |S | logn

n

◆ |S |
2 · k�1k

,

|S | = k,k + 1, . . . ,nk, (37)

where c > 1 is an absolute constant independent of n,k,U .

5.3 The Quantum-Classical Separation
In this section, we derive our lower bound on the randomized query
complexity of the rorrelation problem by combining Tal’s Facts 5.3
and 5.4 with our main result on decision trees (Corollary 4.13). The
technical centerpiece of this derivation is the following “indistin-
guishability” lemma, which is a polynomial improvement on the
analogous calculation by Tal [28, Theorem 5.8] that used weaker
Fourier bounds for decision trees.

L���� 5.5. Let n and k be positive integers. Let U 2 Rn⇥n be a
uniformly random orthogonal matrix. Then with probability 1�o(1),
every function � : {�1, 1}n⇥k ! {0, 1} obeys

���� E
Un,k

� � E
Dn,k ,U

�

���� 6
 
cd · log

2� 1
k (n + k)

n1�
1
k

!k/2
, (38)

where Dn,k ,U is as de�ned in Fact 5.4; d is the minimum depth of
a decision tree that computes �; and c > 1 is an absolute constant
independent of n,k,U ,�.

P����. Fact 5.4 guarantees that with probability 1 � o(1),
there is a probability distribution Dn,k ,U on {�1, 1}n⇥k that
obeys (35)–(37). Conditioned on this event, we will prove (38). To
start with, �x � and write out the Fourier expansion

�(x) =
’

S ✓{1,2, ...,n }⇥{1,2, ...,k }
�̂(S)

÷
(i , j)2S

xi , j

=

nk’
`=0

’
|S |=`

�̂(S)
÷

(i , j)2S
xi , j .

Then
���� E
Un,k

� � E
Dn,k ,U

�

����
6

nk’
`=0

’
|S |=`

|�̂(S)|

������ E
Un,k

÷
(i , j)2S

xi , j � E
Dn,k ,U

÷
(i , j)2S

xi , j

������
6

nk’
`=1

’
|S |=`

|�̂(S)|

������ E
Un,k

÷
(i , j)2S

xi , j � E
Dn,k ,U

÷
(i , j)2S

xi , j

������
6

nk’
`=k

’
|S |=`

|�̂(S)|

������ E
Dn,k ,U

÷
(i , j)2S

xi , j

������ ,

where the �rst step uses the triangle inequality; the second step
is justi�ed by EUn,k 1 = EDn,k ,U 1 = 1; and the third step is valid
due to (36) and the identity EUn,k

Œ
(i , j)2S xi , j = 0 for nonempty

S . Let d be the minimum depth of a decision tree that computes �.
Applying (37) then Corollary 4.13, we conclude that

���� E
Un,k

� � E
Dn,k ,U

�

���� 6
nk’
`=k

c`1

s✓
d

`

◆
(1 + lnnk)`�1

✓
c2` logn

n

◆ `
2 · k�1k

,
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where c1 > 1 and c2 > 1 are the absolute constants in Corollary 4.13
and Fact 5.4. In view of (14), this gives

���� E
Un,k

� � E
Dn,k ,U

�

���� 6
1’
`=k

 
c21ed

`
· (1 + lnnk) `�1`

✓
c2` logn

n

◆ k�1
k

! `
2

6
1’
`=k

 
c21 · ed · (1 + lnnk) ·

✓
c2 logn

n

◆ k�1
k

! `
2

6
1’
`=k

 
cd

4
· log

2� 1
k (n + k)

n1�
1
k

! `
2

,

where c > 1 in the last step is a su�ciently large absolute constant.
This settles (38) in the case when cd log(2k�1)/k (n + k) 6 n(k�1)/k .
In the complementary case, (38) follows from the trivial bound
| EUn,k � � EDn,k ,U � | 6 1.

We have reached the main result of this section, an essentially
tight lower bound on the randomized query complexity of thek-fold
rorrelation problem.

T������ 5.6. Letn andk be positive integers, withk 6 1
3 logn�1.

LetU 2 Rn⇥n be a uniformly random orthogonal matrix. Then with
probability 1 � o(1),

R1/2k+1 (fn,k ,U ) = �

 
n1�

1
k

(logn)2� 1
k

!
(39)

and in particular

R 1
2��

(fn,k ,U ) = �

 
� 2

k
· n1�

1
k

(logn)2� 1
k

!
, 0 6 � 6 1

2
. (40)

P����. We will prove the lower bound for everyU that satis�es
(35) and (38), which happens with probability 1 � o(1) by Fact 5.4
and Lemma 5.5. To begin with,

P
Un,k

[fn,k ,U (x) , 0] = P
Un,k

[|�n,k ,U (x)| > 2�k�1]

6 4k+1 E
Un,k

[�n,k ,U (x)2]

6 4k+1

n

6 1
2k+1

, (41)

where the last three steps use Markov’s inequality, Fact 5.3, and
k 6 1

3 logn � 1, respectively. Also,
✓
2
�

◆k�1
6 E

Dn,k ,U
�n,k ,U (x)

6 2�k P
Dn,k ,U

[�n,k ,U (x) < 2�k ] + P
Dn,k ,U

[�n,k ,U (x) > 2�k ]

= 2�k (1 � P
Dn,k ,U

[fn,k ,U (x) = 1]) + P
Dn,k ,U

[fn,k ,U (x) = 1]

= 2�k + (1 � 2�k ) P
Dn,k ,U

[fn,k ,U (x) = 1],

where the �rst and second steps are justi�ed by (35) and (32), re-
spectively. The last equation shows that

P
Dn,k ,U

[fn,k ,U (x) = 1] >
✓
2
�

◆k�1
� 2�k

> 2�k . (42)

Now �x arbitrary parameters d > 1 and 0 6 � 6 1/2, and con-
sider a randomized query algorithm of cost d that computes fn,k ,U
with error at most � . Then the algorithm’s acceptance probability
on given input x is Er �r (x), where r denotes a random string and
each �r : {�1, 1}n⇥k ! {0, 1} is computable by a decision tree of
depth at most d . Since the error is at most �, we have

P
r
[fn,k ,U (x) = 0, �r (x) = 1] + P

r
[fn,k ,U (x) = 1, �r (x) = 0] 6 �

(43)
for every x 2 {�1, 1}n⇥k .We thus obtain the two inequalities

E
r

P
Un,k

[fn,k ,U (x) = 0, �r (x) = 1] 6 �, (44)

E
r

P
Dn,k ,U

[fn,k ,U (x) = 1, �r (x) = 0] 6 �, (45)

by passing to expectations in (43) with respect to x ⇠ Un,k and
x ⇠ Dn,k ,U , respectively. On the other hand, (38) and k = O(logn)
imply

E
r

���� E
Dn,k ,U

�r � E
Un,k

�r

���� 6
 
c 0d · (logn)

2� 1
k

n1�
1
k

! k
2

(46)

for some absolute constant c 0 > 1.
We now have all the ingredients to complete the proof. For each

r , we have

E
Dn,k ,U

�r = P
Dn,k ,U

[�r (x) = 1]

> P
Dn,k ,U

[fn,k ,U (x) = 1]

� P
Dn,k ,U

[fn,k ,U (x) = 1, �r (x) = 0]

> 2�k � P
Dn,k ,U

[fn,k ,U (x) = 1, �r (x) = 0], (47)

where the last step uses (42). Similarly,

E
Un,k

�r = P
Un,k

[�r (x) = 1]

6 P
Un,k

[fn,k ,U (x) , 0] + P
Un,k

[fn,k ,U (x) = 0, �r (x) = 1]

6 2�k�1 + P
Un,k

[fn,k ,U (x) = 0, �r (x) = 1], (48)

where the last step uses (41). Passing to expectations in (47) and (48)
with respect to r gives

E
r


E

Dn,k ,U
�r � E

Un,k
�r

�

> 2�k�1 � E
r

P
Dn,k ,U

[fn,k ,U (x) = 1, �r (x) = 0]

� E
r

P
Un,k

[fn,k ,U (x) = 0, �r (x) = 1],

which in view of (44) and (45) simpli�es to

E
r


E

Dn,k ,U
�r � E

Un,k
�r

�
> 2�k�1 � 2� .
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Comparing this lower bound with (46), we arrive at
 
c 0d · (logn)

2� 1
k

n1�
1
k

! k
2

> 2�k�1 � 2� .

Taking � = 2�k�3 and solving for d, we �nd that

R2�k�3 (fn,k ,U ) = �

 
n1�

1
k

(logn)2� 1
k

!
.

By the error reduction formula (30), this settles (39) and (40).

Theorem 5.6 settles Theorem 1.1 from the introduction. Corol-
lary 1.2 now follows from (34) and Theorem 1.1 by taking k =
d1/�e + 1 and � = 1/6. Similarly, Corollary 1.3 follows from (34)
and Theorem 1.1 by setting � = 1/6 and taking k = k(n) to be a
su�ciently slow-growing function.
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